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Pressure drop due to the motion of a sphere near the 
wall bounding a Poiseuille flow 
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A n  expression is derived for the (low Reynolds number) additional pressure drop 
created by a relatively small sphere moving near the wall of a circular tube 
through which there is a Poiseuille flow. Two specific applications are examined: 
(i) the sedimentation of a homogeneous non-neutrally buoyant sphere in a 
quiescent fluid; and (ii) the motion of a neutrally buoyant sphere. In  the latter 
case a pronounced increase in the additional pressure drop is predicted when the 
separation between the sphere and the tube wall is reduced to zero. 

This analysis, which includes the behaviour for a sphere in contact with the 
tube wall, supplements previous ‘method of reflexions ’ treatments valid only 
when the distance from the sphere centre to the wall is large compared with the 
sphere radius. 

1. Introduction 
One of the fundamental theoretical problems in the slow viscous duct flow 

of dilute, rigid-sphere suspensions is the description of the behaviour of a single 
sphere immersed in a fluid bounded by a circular cylindrical tube. The case 
of greatest interest in applications is that in which the sphere radius is small 
compared with that of the cylinder. This problem can be viewed as one of 
determining the hydrodynamic influence of the tube wall upon the suspended 
sphere. The magnitude of this interaction effect depends inter alia upon the size 
and lateral position of the sphere relative to the tube wall. 

Prior analyses (based upon ‘ method of reflexions ’ or equivalent computational 
schemes) have been concerned exclusively with the case where the distance 
of the sphere from the tube wall is large compared with the sphere radius. 
The present work is devoted to a treatment of the opposite case, where the 
sphere is situated very near to the wall. It will be demonstrated that very con- 
siderable alterations can occur in the translational and rotational particle velo- 
cities, and in the additional pressure drop (above the purely Poiseuillian portion 
of the pressure drop) when a small sphere is in close proximity to the wall, in 
contrast to the case where it is relatively distinct. The consequences of this 
hydrodynamic wall effect are pertinent to a proper understanding of suspension 
sedimentation and rheology . 

t Present address: University Medical Clink, Montreal General Hospital, 1650 Cedes 
Avenue, Montreal 109. 
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Consider a homogeneous sphere (radius = a, density = p,) immersed in an 
incompressible Newtonian fluid (viscosity = p ,  density = p)  confined Within a 
long circular cylindrical tube of radius R,. When the sphere is not neutrally 
buoyant (p, + p )  the tube will be assumed vertical, with its symmetry axis 
parallel to gravity. As in figure 1, let h denote the radial distance from the sphere 
centre to the nearest point on the tube wall. 

All prior theoretical treatments of flow past an eccentrically positioned sphere 
have been concerned with the limit in which the sphere is small compared with its 
distance from the wall, i.e. a < h < R,. As shown by Cox & Brenner (1967) 
the slow viscous motion in this limit can be analysed via regular perturbation 
expansion procedures. Alternatively, equivalent asymptotic expansions may be 
derived by application of the ‘method of reflexions’. This latter technique was 
applied by Brenner & Happel (1958) to Poiseuille flow past a sphere translating, 
without rotation, parallel to the tube axis. Higher order terms in a/R, were 
subsequently evaluated by Greenstein & Happel (1968, 1970), who also included 
the effect of sphere rotation. The results of Greenstein & Happel (1970) provide 
an asymptotic expression for the additional pressure drop in the important 
special case in which sedimentation and other buoyancy effects are negligible. 
Concurrently, Brenner (1970) demonstrated that the same neutrally buoyant 
pressure drop terms could be obtained without the detailed knowledge of the 
boundary-value solutions required by the method of reflexions. When the 
sphere is constrained to translate (without rotation) along the tube axis (h  = R,) 
the fluid motion is axisymmetric, and hence easily susceptible to higher order 
analysis (Haberman & Sayre 1958; Hochmuth & Sutera 1970; Wang & Skalak 
1969). 

Because of convergence difficulties the method of reflexions, as well as equivalent 
expansion procedures, cannot be used to examine the hydrodynamic particle- 
wall interaction experienced by an eccentrically positioned sphere in the case of 
either (a) a small sphere in close proximity to the tube wall, a < h < R,; or 
(b) a closely fitting sphere, a < F, < R,, a = O(R,). The proper analysis of case 
(b ) ,  which necessitates employing singular perturbation techniques, is treated 
in a companion paper (Bungay & Brenner 1973b; see also Bungay 1970). In  the 
present study an alternative regular perturbation procedure is outlined for case 
(a)  to complement the method of reflexions. 

Before confining attention to this case we shall derive reciprocity relationships 
between the additional pressure drop and the hydrodynamic force and torque 
acting on a sphere. These apply without restriction as to  sphere/tube size or 
radial position in the tube. 

2. Sphere of arbitrary size and position 

Formulation of the problem 

In  figure 1 a Cartesian co-ordinate system (x, y, z )  is defined with origin at the 
centre o of the sphere. The unit vector 2 of the co-ordinate system is parallel to 
the tube axis. Both the 9 and 2 unit vectors lie in the meridian plane containing 
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FIGURE 1. Eccentrically positioned sphere in a vertical cylindrical tube, 

the tube axis and passing through the sphere centre. The cross-sectional plane 
perpendicular to the tube axis and passing through the point o constitutes a 
second plane of geometrical reflexion symmetry. 

The suspending fluid flows upward through the vertical tube at a steady super- 
ficial mean velocity V,. Motion of the sphere is prescribed by the translational 
velocity U, of its centre and its angular velocity o. Accordingly, in consequence 
of the no-slip condition, the local fluid motion satisfies the boundary condition 

v = U , + o  x r on the sphere, (2.1) 
in addition to which v = 0 on the tube wall, (2.2) 
where r is the position vector relative to an origin a t  the sphere centre. The three 
characteristic velocities U,, o and En may be tentatively regarded as independent 
quantities. In  consequence of these motions the particle is acted upon by a 
hydrodynamic force F and a hydrodynamic torque To about the sphere centre. 

All relevant particle Reynolds numbers are assumed sufficiently small com- 
pared with unity to justify neglect of the inertial terms in the Navier-Stokes 
equations. After the hydrostatic term has been incorporated in the definition 
of the dynamic pressure fieldp, the dynamical and kinematical equations govern- 
ing the fluid motion thereby reduce to the Stokes equations, 

pv2v = vp (2.3) 
and v . v  = 0. (2.4) 

6-2 
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As demonstrated by Cox & Mason (197 1) for the case where gravity represents 
the only external force, the sphere cannot experience any lateral movement. 
Rather, the sphere, if‘translating, necessarily travels parallel to the tube axis. 
Hence, we may write 

U, = U,n, F = Ff. (2.5a, b)  

By symmetry arguments based upon the sphere-tube geometry, the translational 
motion (2.5a) can give rise to a hydrodynamic torque possessing a component 
only in the x direction. If external torques other than those acting parallel to 2 
are supposed absent in general, then we may also prescribe that 

w = wB, To = T,B. (2.6a, b)  

The disturbance to the Poiseuille flow caused by the presence of the sphere 
decays exponentially with distance from the particle (Sonshine, Cox & Brenner 
1966). Consider a hypothetical ‘inlet’ plane S, located at a distance of $1 units 
upstream of the sphere and an ‘exit’ plane S,  at a similar distance downstream. 
For sufficiently large 1 the local velocity field is Poiseuillian: 

v(Sc),v(S,) + uf as 1 -+ co, (2.7) 

with u = 2V,[I - (R/E,)2], (2.8) 

in which R is the radial distance from the tube axis. The dynamic pressure across 
each of these two distant planes is uniform, and consequently can be written as 

as 1 - t ~  (2.9) 

pressure distribution for flow at 
mean velocity V, in-the absence of the sphere, C being an arbitrary constant. Let 

and 

(2.10) 

(2.11) 

respectively, denote the pressure drops in the presence and absence of the par- 
ticle from the Poiseuille flow. Then, 

* 
AP+ = lim (AP- AP) 

l+CQ 
(2.12) 

represents the additional pressure drop due to the presence of the sphere in the 
flow. 

In  view of the linearity of the Stokes equations and of the boundary conditions, 
the hydrodynamic force, torque and additional pressure drop are necessarily 
linear functions of each of the three characteristic velocities. Thus, we may write 

( A : A ) = - ’ k t  :)(-:)’ (2.13) 

F Kt Kr Ks 
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in which A = TRZ is the tube cross-sectional area, AP+A then being the additional 
pressure drop force. The matrix composed of the nine 'intrinsic hydrodynamic 
resistance ' coefficients is a purely geometrical function, dependent only upon the 
sphere and tube radii, and upon the relative radial position of the sphere in the 
tube. 

The scalar elements of the hydrodynamic resistance matrix are all positive, 
with the exception of K' and Lt. In  the perturbed motion, representing the dif- 
ference between the flows in the presence and absence of the particle, the rate W 
at which work is being done by the stresses acting over the surfaces bounding the 
fluid is J$' = - (FUo + T, w - AP+AVm). In  creeping flow this quantity is identical 
to the rate of mechanical energy dissipation & in the fluid bounded by the sur- 
faces S, and S,, the tube wall S,  and the sphere surface S,. Since this dissipation 
rate is necessarily non-negative it follows that 

F 
& = - ( U  o 'w,  -vm)(  T, ) 2 0, (2.14) 

AP+A 

whence the resistance matrix is a positive-definite form. 

ing to the three reciprocity relations 
The resistance matrix also enjoys the property of being symmetric, correspond- 

K' = Lt, Pt = K", P = L". (2.15), (2.16)) (2.17) 

The first of these is proved by Brenner (1964). Demonstrations of the validity of 
the remaining two Onsager-like reciprocal relations are furnished in the following 
paragraphs. Equations (2.13)-(2.17) apply even for non-circular cylindrical 
ducts. 

Reciprocal relations 
Derivations of (2.16) and (2.17) may be formulated via the Lorentz reciprocal 
theorem using techniques previously applied in the proof of (2.15). Let V' and 
V" be any pair of velocity fields satisfying the Stokes equations, and let x' and 
x" denote the corresponding pressure tensors: .re = - Ip +p[Vv + (Vv)+]. Accord- 
ing to the reciprocal theorem, 

as. x" .v" = as. X N  . v'. k 96s 
(2.18) 

Here, S is an arbitrary closed surface bounding a continuous volume V of the 
homogeneous fluid, and dS  is a differential element of surface area directed into 
the fluid volume V .  For present purposes, S is chosen to consist of the planes S,  
and S,, the portion S, of the inside wall of the tube between these two planes, and 
the surface S, of the sphere 

s = s,+si+sp+s,. (2.19) 

To deduce the cross-relationship (2.16), let the primed motion denote flow past 
a sphere which is stationary with respect t o  the tube. Thus, at the rigid surfaces, 

v'=  0 on S and S,, (2.20a, b )  
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v '+u2 on S,  and S,. (2 .20 c )  

Choice of the double-primed flow to be that resulting from the sphere translating, 
without rotation, through an otherwise quiescent medium (V, = 0) leads to the 
boundary conditions 

v" = q2 on S,, v" = 0 on S ,  ( 2 . 2 1 a ,  b )  

and v"+O on S,  and Xi. ( 2 . 2 1 c )  

From the last of these conditions it follows that X" -+ I$, with p" being uniform 
on both S, and Si. This limit condition, together with (2.2Oa, b, c ) ,  when substi- 
tuted into the right-hand side of (2 .18) ,  along with d S  = +$dS on Si and 

d S = - 2 d S  on S,, 

d S  .d. Y' = [p"(S,) -p"(Si)] UdS + /LP~&V~.  ( 2 . 2 2 )  
yields Is s, 

1% Ise 
In arriving at the above, (2 .12)  and ( 2 . 1 3 )  have been used along with 

V,= A-l u d 8 r A - l  U d S .  

Application of ( 2 . 5 b )  and ( 2 . 1 3 ) ,  and use of the integral relation 

F = l S p d S . n  

to evaluate the hydrodynamic force exerted on the sphere in the single-primed 
case, leads to the relation 

jsp d S  . X' . 2 = pKsV,. 

This expression, together with boundary conditions ( 2 . 2 1 a ,  b, c), simplifies the 
left-hand side of (2 .18)  to the form 

f s d S  .X ' .V) '  = pKSU,'V,. ( 2 . 2 3 )  

Identity ( 2 . 1 6 )  is established by equating (2 .22)  and ( 2 . 2 3 ) .  The second identity, 
(2.17), is proved in the same manner upon choosing the double-primed flow 
to be that arising solely from rotation of the sphere (U, = V, = 0). 

The reciprocity relation analogous to (2 .16)  for the motion of a spherical fluid 
droplet within a duct of arbitrary cross-section was derived by Bungay & 
Brenner ( 1 9 7 3 ~ ) .  

3. Small sphere near the tube wall 
Perturbation expansion 

Consider the case of a sphere whose relative size and lateral position in the tube 
satisfy the dual constraints 

h a/h < 1 ,  ( 3 . 1 )  

in which h = a/R,. ( 3 4  
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Expressed in the Cartesian co-ordinates of figure 1, the equation of the tube wall 
surface is x2 + (R, - h - y)2 = Ri. Use of the dimensionless co-ordinates 

2 = x/a, 0 = yla, 5 = z/a (3.3) 

0 = -h/a+(+82)A+O(h2), (3.4) 

permits the equation describing the wall to be expressed as a series expansion in 
powers of h : 

for 121 < A-1. This expansion shows that, to terms of zero order in A, the tube 
wall may be replaced by the plane surface $j = - h/a. 

The asymptotic expression (3.4) for the surface defining the cylindrical bound- 
ary suggests that the velocity and pressure fields possess the following regular 
perturbation expansions : 

v =v*[v,+hv,+ ...I (3.5) 

and P = (PG/a)[Po+hP,+...l, (3-6) 

in which V, is a characteristic reference velocity to be determined. The local 
field pairs (vo,po), (vl,pl), . . . , depend upon P = r/a and the parameter a/h, 
but are independent of h for h < a/h. Upon substitution of the expansions (3.5) 
and (3.6) into the governing equations of $ 2 ,  the zero-order fields (v,,p,) are 
found to satisfy the following differential equations and boundary conditions : 

$", = $Po, $ v, = 0, ( 3 . 7 ~ 4  b)  

v, = Q$+13(* x P) on the sphere JP] = 1, (3.8) 

v, = 0 on the plane $j = - h/a (3.9) 

in which V ,  = I&/&, 13 = wa/V, (3.11 a, b) 

and vo+uo, pO+O as 1i.l -+a, (3.10) 

and 6 = aV. (3.12) 

The zero-order undisturbed velocity field u, far from the sphere can be found 
by expressing the Poiseuille velocity distribution as a polynomial in h of the form 

u = V*[uo+hu,+ ...I. (3.13) 

h 

A concise formulation of the zero-order field found in this way is 

in which 

and 

u, = Q, + F . ($a),, 

($a), = (a/h)31.  
Go = 2 

(3.14) 

(3.15) 

(3.16) 

This recasting of the Poiseuille field also shows that the reference velocity should 
be chosen as 

V, =4Vmh/Ro. (3.17) 

Equation (3.14) constitutes a simple shear flow whose dimensional rate of shear 
4Vm/R0 is the local Poiseuille shear rate at  the tube wall. Equations (3.7)-(3.10) 
and (3.14) reveal that, to terms of zero order in A, the original tube flow problem 
may be approximated by the more tractable problem of simple shear flow 
round a sphere in the neighbourhood of a plane wall. 



88 P .  M .  Bungay and H .  Brenner 

Expansions (3.5) and (3.6) induce expansions of the hydrodynamic force and 
torque of the forms 

F = ~ ~ , u & u [ & + A F , +  ...I (3.18) 

and To = 8np&~~[(T,),+A(T,)1+...]. (3.19) 

The zero-order contributions expressed in terms of dimensionless zero-order 
force and torque resistance coefficients are 

and 

(3.20) 

(3.21) 

There exist no zero-order contributions to the pressure drop coefficients in 
(2.13). This is to be expected since no pressure drop can arise from the semi- 
infinite flow described by (3.7)-(3.10). However, the zero-order flow fields do 
give rise to pressure drops of second order in A. Through application of the recipro- 
cal theorem in a derivation similar to those of $2, Brenner (1970) has shown that 
the additional pressure drop for a rigid particle in creeping duct flow can be cal- 
culated from the expression 

AP+V,A = lsp d S  . x .  u. (3.22) 

The pressure tensor expanded in powers of h is 

x = @&/a) [xo + Ax, + . ..I. (3.23) 

Substitutingexpansions (3.13) and (3.23) into (3.22),alongwithuseof d S  = a2d& 

yields 
AP+ = (p&/R0) [A2APZ+ + A3AP,+ + . . .], (3.24) 

where, for the leading coefficient, 

(3.25) 

in which no = - Ipo+$vo + ($v0)+ is the dimensionless pressure tensor derived 
from the solution (v,, p,) of (3.7)-(3.10). This coefficient may be expressed linearly 
in terms of dimensionless second-order resistance coefficients as 

APZ+ = Pi-PiOo-c&I.  (3.26) 

The dimensionless reciprocity relations corresponding to (2.15)-( 2.17) for the 
linear shear flow problem are then 

K; = $Li, (3.27) 

Pi = 24(h/a) K:, = 32(h/a) Lt. (3.28), (3.29) 

These resistance coefficients are dependent only on a/h, being independent of 
A.  Their variation with the parameter a/h is discussed in the following subsection. 

Evaluation of resistance coe&ients 

The motion of a sphere in the neighbourhood of a, plane wall has been studied 
extensively. Goldman, Cox & Brenner (1967a, b)  tabulate numerical values of 
the force and torque resistance coefficients over the full range of the parameter, 
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a 

3.0 
2.0 
1.5 
1.0 
0.5 
0.3 
0.1 
0-05 
0.01 
0 

a3 
alh 
0 

0.09933 
0-26580 
042510 
0.64805 
0.88684 
0.95666 
0.99502 
0.99875 
0.99995 
1~00000 

p: 
16i  

15.9970 
15.9538 
15.8416 
15.5870 
15.2598 
15.1630 
15-1107 
15.1056 
15.1040 
15.1038 

pi 
m i  

257.859 
110.498 
79.864 
64-273 
57-921 
56.944 
56.516 
56.477 
56.466 
56.465 

pi 
m i  

255.817 
105.382 
72.151 
53.297 
43.731 
41.849 
40.929 
40.844 
40.814 
40.812 

TABLE 1. Pressure drop resistance coefficients. The bipolar co-ordinate parameter 
a is defined as a/h = sech a 

0 < a/h < 1. These values were computed from exact solutions of the Stokes 
equations in spherical bipolar co-ordinates, and from asymptotic singular 
perturbation analyses. The notation of these authors is related to that of the 
present text by the relations 

KE = -FZ, LE = -TT, ( 3 . 3 0 ~ '  6) 

K; = Fig, L; = +(a/h) TSy., (3.31a7b) 

Ki  = - $'g, Lk = - Tr .  ( 3 . 3 2 ~ '  b )  
Values of Po and Li had previously been calculated by O'Neill (1964), who also 
computed KZ and Lb for a/h = 1 (O'Neill 1968). 

and Pi presented in table 1 were 
calculated from the results of Goldman et al. (19676) by employing (3.31) in 
conjunction with the identities (3.28) and (3.29).? Computation of values of the 
remaining coefficient Pi appearing in table 1 required use of the following integral 
expression, obtained from (3.25) and (3.26): 

Values of the pressure drop ooefficients 

(3.33) 

The dimensionless pressure tensor 6 appearing in the above integrand is that, 
arising from the solution (vo, po)  of (3.7)-(3.10) for a stationary sphere, 

I,= Q = O .  

t The asymptotic forms of the pressure drop coefficients as a/h + 0 are as follows: 

= 16 +o ( ; ) I ,  

45 a 4 -l 
P: = 24 (;) [ -; (37 [ -; (;) +$ ( -= (%) ] + O( ;)', 

These reflexion-type expansions were obtained from the comparable reflexion-type expies- 
sions for the force and torque resistance coefficients summarized by Goldman et al. (1967 a, b) ,  
the analysis of Wekiya, Darabaner & Mason (1967), and the limiting form of the additional. 
presswle drop for a neutrally buoyant sphere suspended in a Poiseuille flow (Brenner 1970), 
LIP$ = 9 ( ~ / h ) + O ( a / h ) ~ ,  derivedfrom (3.24), (3.17) and (4.14) in the limit where /3+ 1. 
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The exact bipolar co-ordinate solution of this problem (Goren & O'Neill 1971) 
was used to effect an analytic integration of (3.34)' using techniques developed 
by Goldman (1966) for the evaluation of a similar integral (Goldman et al. 1967b).t 

4. Results and discussion 
The asymptotic expressions of 0 3 will be applied in two specific situations of 

importance : the sedimentation of a homogeneous non-neutrally buoyant sphere 
in an otherwise quiescent fluid; and the motion of a neutrally buoyant sphere 
suspended in a Poiseuille flow. 

Sedimentation of a homogeneous sphere in a quiescent fluid (V, = 0) 

A sphere settling at its terminal speed is acted upon by a hydrodynamic force 
which is equal in magnitude, but opposite in direction, to the force of gravity g 
(corrected for the buoyant effect of the fluid), F = $na3(ps-p) g. As the sphere is 
homogeneous, no external gravitational couple acts on it (i.e,, To = 0), whence 
the sphere is freely rotating. According to (2.13) the angular velocity of such a 
sphere is related to its terminal translational velocity by the expression 

w = - (LtlL') u,. (4.1) 

In  the absence of the constraining effect of the tube walls the sphere translates 
without rotation, its sedimentation velocity being given by Stokes' law as 

U, = -P/6rr,ua. (4.2) 
On substituting (4.1) and (4.2) into (2.13) one finds, in comparison with the un- 
bounded case, that the sphere in the tube settles at  a velocity U, given by the 
relation &/Urn = 6na[Kt - (Lt/Lr) K'1-l. (4.3) 

Sedimentation creates a pressure differential AP+ in the fluid (Feldman & 
Brenner 1968), the pressure in the fluid being highest on that side of the sphere 
towards which it translates. f iom (2.13) and (4.1) this pressure diminution is 

AP+A/,uU, = (Lt/L') Pr - Pt. 

Alternatively, use of (2.13) in conjunction with the reciprocity conditions 
(2.15)-(2.17) gives the equivalent formula 

AP+A KSL' - KrLs -- - 
F KtLr-KrLt' (4.4) 

Relations (4.3) and (4.4) apply for a sphere of any size or position in the tube. 
For a small sphere ( A  < 1) they adopt the asymptotic (dimensionless) forms 

U,/Urn = [Kg - (Lg/L2;) K;]-'+ O(h)  (4.5) 

and 
h KS, LG - K'Ls 

Oh+O(h2). 
AP+A - = 4(-) P a KhLL-KLLi 

'These forms are valid for expansions of the type discussed in $ 3  ( A  << a/h < l), 
as well as for 'reflexion-type' expansions ( A  < a/h 4 1). 

t See footnote on previous page. 
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0 1 

Lateral position, a/h 

FIGURE 2. Terminal sedimentation velocity of a sphere settling freely in a vertical tube 
(To = 0, V, = 0): -, perturbation expansion (4.5); ----, method of reflexions ex- 
pansion (4.7); 0, sphere centre on tube axis. 

The effect of the wall on the sedimentation velocity of a small sphere is illu- 
strated in figure 2. The dashed lines are obtained from the method of reflexions 
expansion (Brenner 1966) 

q/um = 1 -f(p) A + OW) (p G I - A ) ,  (4.71 

in which the argument /3 of the wall-effect function f represents the fractional 
radial distance of the sphere centre from the tube axis: 

p = 1 - @/a) A. (4.8) 
Numerical tabulations of the function f (p) ws. pin the range 0 < /3 < 1 are furnished 
by Greenstein & Happel (1968) and, more completely, by Hirschfeld (1972). 
The values off@) decrease slightly fromf(0) = 2-10444 to a minimum at p z 0.41 
before approaching the asymptote f N (9/16) ( I  -/3)-l as ,8 -+ 1. The circled 
points from which the curves originate denote the velocity ratios for sedimenta- 
tion along the tube axis. The solid line in figure 2 is a plot of the first term of 
expansion (4.5), obtained using values of the resistance coefficients tabulated by 
Goldman et air. (1967a). The solid and dashed lines will tend to agree for the 
intermediate parameter range h < a/h < 1 common to both expansion pro- 
cedures. 

Not surprisingly, the velocity ratio U,/U, never exceeds unity, the influence 
of the cylindrical boundary being to retard the settling motion of the sphere a t  
all radial positions. Provided the constraint A < 1-1 is satisfied the settling 
velocity for a given h is greatest at  the lateral position (p x 0.41) corresponding 
to the minimum in f(P). For P > 0-41, the closer the sphere is to the wall the more 
slowly it settles. In fact, according to the solid curve in figure 2, the settling 
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Lateral position, a/h 

FIGURE 3. Pressure drop created by sphere settling in a vertical tube (To = 0, 7, = 0) or 
translational velocity of a neutrally buoyant sphere (3' = 0, To = 0): - , perturbation 
expansion (4.6); ---- , method of reflexions expansion (4.9); 0, sphere centre on tube axis; 

, data of Goldsmith & Mason (1962). 

velocity decreases rapidly to zero as a/h -+ 1 .  Theoretically, contact with the wall 
would bring the particle to rest (U, = O,W = 0), since an infinite force would 
then be required to produce motion of the sphere (Goldman et al. 1967a,b; 
O'Neill & Stewartson 1967). As was discussed by Goldman et al. ( 1 9 6 7 ~ )  such 
behaviour is unlikely to be observed in practioe owing to a breakdown in the 
assumptions regarding perfect smoothness of the rigid surfaces and the integrity 
and constancy of physical properties of the fluid phase. 

According to the method of reflexions, the pressure difference accompanying 
this particle sedimentation is (Brenner 1966) 

The complementary perturbation expansion was evaluated by substituting into 
(4 .6)  the appropriate resistance coefficients tabulated by Goldman et al. (19673). 
Both results are plotted in figure 3. As with the settling velocity, the pressure 
drop is a function of both h and a/h. Comparison with figure 2 suggests that the 
variation of pressure drop with lateral position is only partly attributable to 
the change of settling velocity with position. For a given sphere and tube the 
maximum pressure drop occurs for settling along the tube axis, p = 0. 

AP+A/F = 2 ( 1 - p 2 ) - + ~ 2 + 0 ( ~ 3 )  (p-g I - A ) .  (4.9) 

Neutrally buoyant sphere in a Poiseuille Jlow 
In  the absence of external forces and torques the sphere is freely suspended by the 
fluid (6 = 0, To = 0). Solution of (2.13) for this case yields the following values 
for the translational and angular velocities of the neutrally buoyant sphere: 

Uo KsLr-KrLa w KaLt-K'LS 
- - KtLr-KrLt' - - KtLp-KrLt' (4.10),  (4.11) 
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From (2.13), the additional pressure drop resulting from the presence of such a 
sphere is then 

AP+A/pVm = Ps- (Uo/Vm) Pt - (0/Vm) Pr, (4.12) 

in which the appropriate expressions for the velocity ratios are those given by 
(4.10) and (4.11). 

It is interesting to observe that the right-hand side of (4.10) is identical to that 
of (4.4). Indeed, the equivalence of these two equations can be demonstrated 
directly via use of the reciprocal theorem of 5 2 : 

(4.13) 

Hence, the asymptotic forms adopted by the neutrally buoyant translational 
velocity of (4.10) can be obtained from (4.6), (4.9) and (4.13). The remarks made 
above concerning figure 3 are now seen to apply to this velocity ratio U,/V, too. 
Conversely, the dependence of the pressure drop upon the size and lateral posi- 
tion of a sedimenting sphere in a quiescent fluid can be determined experimentally 
from measurement of the transitional velocity of an identical, but neutrally 
buoyant, sphere at the same lateral position. Such information, albeit for rela- 
tively large spheres, is available from the experimental measurements of Gold- 
smith & Mason (1962) of the particle velocities in a dilute suspension of neutrally 
buoyant spheres suspended in a Poiseuille flow. Their data for the translational 
velocities are replotted in figure 3 as the black circles. It would not be normally 
expected that the truncated asymptotic expansions for A < 1 would produce 
accurate predictions in the upper portion of the range, 0.13 < A < 0-53, covered 
by these experiments. Nevertheless, reasonable agreement exists between the 
data and the method of reflexions expansion. 

In  figure 4 representative plots are presented for the dominant contributions 
to the additional pressure drop engendered by a small neutrally buoyant sphere. 
The dashed lines -valid when the sphere is far from the wall - were calculated 
from the expansion (Brenner 1966, 1970) 

AP+B,/i.v, = 9 p 2 A 3  + O(A6) (p < 1 - A). (4.14) 

For a given A the minimum pressure drop arises when the sphere moves along the 
tube axis, p = 0. Although the upper bound of the eccentricity parameter is 

= 1, the maximum value of the contribution of order A3 is not 53.3A3, as would 
be obtained by letting p -+ 1 in (4.14). Rather, as can be seen from figure 4, the 
perturbation expansion for the case of a sphere close to the wall predicts the 
maximum value to be 226A3- a value over four times as large as that predicted 
by the method of reflexions. This value is arrived at by expressing (4.12) as the 
expansion 

in which G = 4Vm/R0 is the Poiseuille shear rate at  the tube wall. Numerical 
values for the coefficient of h3 in (4.15) were computed from the pressure drop 
coefficients of table 1 and the neutrally buoyant velocity ratio values of Gold- 
man et al. (1967b). The maximum, occurring at alh = 1, corresponds to the 
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0 1 

Lateral position, a / h  

FIGURE 4. Additional pressure drop created by a neutrally buoyant sphere in Poiseuille 
flow ( P  = 0, To = 0): - , perturbation expansion (4.15); ----, method of reflexions 
expansion (4.14); 0, sphere centre on tube axis. 

additional pressure drop for a stationary sphere (U, = w = 0 )  in contact with the 
tube wall. 

It has been suggested by Greenstein & Happel (1970) that the method of re- 
flexions solution for a single sphere in a tube can be used to predict the pressure 
drop-flow rate relationship for the tube flow of dilute suspensions of non-hydro- 
dynamically interacting spheres. These authors obtained an explicit asymptotic 
result, assuming the distribution of spheres to be uniform across the tube. 
The contributions (4.14) of each of the individual spheres were 'summed', by 
application of the equation 

(4.16) 

Though this procedure may produce an adequate approximation for very small 
A, the present work indicates that it is fundamentally improper to use the method 
of reflexions expansion over the entire tube cross-section. Equation (4.16) 
ignores the contribution of the complementary expansion (4.15) for spheres 
located immediately adjacent to the tube wall. 

The symmetry of the resistance matrix in (2.13) is closely related to the cor- 
responding symmetry of a similar (partitioned) matrix recently introduced by 
Hinch (1972) for an isolated particle in an unbounded fluid subjected to a linear 
shear flow. Inclusion of a solid plane boundary on whose surface v = 0 does not 
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affect the validity of Hinch’s (1972) arguments. In  place of the pressure drop 
force AP+A in our analysis there appears a ‘stresslet’ S, defined as 

In  view of (3.22) and (3.13)-(3.14), a close correspondence clearly exists between 
the stresslet and the additional pressure drop force for a force-free particle, 

/ B p d S . x  = 0. 

This equivalence is not surprising in view of the fact that the stresslet and the 
term AP+ATr, are both related to the additional energy dissipation in a linear 
shear flow. 
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